modelling
Contains the basic objects required for expressing emulation of simulators. Many of these are abstract base classes which allow the derivation and training of both single and multi-level GPs, creation and manipulation of Inputs/TrainingDatum, alongside creation and management of the domain space.
Abstract Base Classes (Classes)
AbstractEmulator
Represents an abstract emulator for simulators.
AbstractGaussianProcess
Represents an abstract Gaussian process emulator for simulators.
AbstractHyperParameters
A base class for hyperparameters used to train an emulator.
Gaussian Processes (Classes)
GaussianProcessHyperparameters
Represents the hyperparameters for use in fitting Gaussian processes.
Prediction
Represents the prediction of an emulator at a simulator input.
GaussianProcessPrediction
Represents a prediction arising from a Gaussian process.
MultiLevel
A multi-level collection of objects, as a mapping from level to objects.
MultiLevelGaussianProcess
A multi-level Gaussian process emulator for simulators.
Design Points (Classes)
Input
Class representing the input co-ordinate vectors to a simulator or emulator.
TrainingDatum
Class representing a training point for an emulator.
Domain Space
SimulatorDomain
Class representing the domain of a simulator.
AbstractEmulator
Bases: ABC
Represents an abstract emulator for simulators.
Classes that inherit from this abstract base class define emulators which can be trained with simulator outputs using an experimental design methodology.
NOTE: Classes derived from this abstract base class MUST implement required checks on duplicated Inputs. Only unique Inputs should be allowed within the training data.
Source code in exauq/core/modelling.py
fit_hyperparameters: Optional[AbstractHyperparameters]
abstractmethod
property
(Read-only) The hyperparameters of the fit for this emulator, or None
if
this emulator has not been fitted to data.
training_data: tuple[TrainingDatum]
abstractmethod
property
(Read-only) The data on which the emulator has been trained.
fit(training_data, hyperparameters=None, hyperparameter_bounds=None)
abstractmethod
Fit the emulator to data.
By default, hyperparameters should be estimated when fitting the emulator to data. Alternatively, a collection of hyperparameters may be supplied to use directly as the fitted values. If bounds are supplied for the hyperparameters, then estimation of the hyperparameters should respect these bounds.
Parameters:
-
training_data
(Collection[TrainingDatum]
) –The pairs of inputs and simulator outputs on which the emulator should be trained.
-
hyperparameters
(Optional[AbstractHyperparameters]
, default:None
) –Hyperparameters to use directly in fitting the emulator. If
None
then the hyperparameters should be estimated as part of fitting to data. -
hyperparameter_bounds
(Optional[Sequence[OptionalFloatPairs]]
, default:None
) –A sequence of bounds to apply to hyperparameters during estimation, of the form
(lower_bound, upper_bound)
. All but the last tuple should represent bounds for the correlation length scale parameters, in the same order as the ordering of the corresponding input coordinates, while the last tuple should represent bounds for the process variance.
Source code in exauq/core/modelling.py
predict(x)
abstractmethod
Make a prediction of a simulator output for a given input.
Parameters:
-
x
(Input
) –A simulator input.
Returns:
-
Prediction
–The emulator's prediction of the simulator output from the given input.
Source code in exauq/core/modelling.py
AbstractGaussianProcess
Bases: AbstractEmulator
Represents an abstract Gaussian process emulator for simulators.
Classes that inherit from this abstract base class define emulators which
are implemented as Gaussian process. They should utilise
GaussianProcessHyperparameters
for methods and properties that use parameters, or
return objects, of type AbstractHyperparameters
.
NOTE: Classes derived from this abstract base class MUST implement required checks on duplicated Inputs. Only unique Inputs should be allowed within the training data.
Notes
The mathematical assumption of being a Gaussian process gives computational benefits, such as an explicit formula for calculating the normalised expected squared error at a simulator input/output pair.
Source code in exauq/core/modelling.py
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 |
|
fit_hyperparameters: Optional[GaussianProcessHyperparameters]
abstractmethod
property
(Read-only) The hyperparameters of the fit for this Gaussian process emulator,
or None
if this emulator has not been fitted to data.
kinv: NDArray
abstractmethod
property
(Read-only) The inverse of the covariance matrix of the training data,
or None
if the model has not been fitted to data.
correlation(inputs1, inputs2)
abstractmethod
Compute the correlation matrix for two sequences of simulator inputs.
If corr_matrix
is the Numpy array output by this method, then it should be a
2-dimensional array of shape (len(inputs1), len(inputs2))
such that
corr_matrix[i, j]
is equal to the correlation between inputs1[i]
and
inputs2[j]
(or, in pseudocode, corr_matrix[i, j] = correlation(inputs1[i],
inputs2[j])
). The only exception to this is when either of the sequence of
inputs is empty, in which case an empty array should be returned.
Parameters:
-
inputs1
(Sequence[Input]
) –Sequences of simulator inputs.
-
inputs2
(Sequence[Input]
) –Sequences of simulator inputs.
Returns:
-
ndarray
–The correlation matrix for the two sequences of inputs, as an array of shape
(len(inputs1), len(inputs2))
.
Source code in exauq/core/modelling.py
covariance_matrix(inputs)
Compute the covariance matrix for a sequence of simulator inputs.
In pseudocode, the covariance matrix for a given collection inputs
of simulator
inputs is defined in terms of the correlation matrix as sigma^2 *
correlation(inputs, training_inputs)
, where sigma^2
is the process variance
for this Gaussian process (which was determined or supplied during training) and
training_inputs
are the simulator inputs used in training. The only exceptions
to this are when the supplied inputs
is empty or if this emulator hasn't been
trained on data: in these cases an empty array should be returned.
The default implementation of this method calls the correlation
method with the
simulator inputs used for training and the given inputs
.
Parameters:
-
inputs
(Sequence[Input]
) –A sequence of simulator inputs.
Returns:
-
ndarray
–The covariance matrix for the sequence of inputs, as an array of shape
(len(inputs), n)
wheren
is the number of training data points for this Gaussian process.
Notes
There is no additional error handling, so users requiring error handling should override this method.
Source code in exauq/core/modelling.py
fit(training_data, hyperparameters=None, hyperparameter_bounds=None)
abstractmethod
Fit the Gaussian process emulator to data.
By default, hyperparameters should be estimated when fitting the Gaussian process to data. Alternatively, a collection of hyperparameters may be supplied to use directly as the fitted values. If bounds are supplied for the hyperparameters, then estimation of the hyperparameters should respect these bounds.
Parameters:
-
training_data
(Collection[TrainingDatum]
) –The pairs of inputs and simulator outputs on which the Gaussian process should be trained.
-
hyperparameters
(Optional[GaussianProcessHyperparameters]
, default:None
) –Hyperparameters for a Gaussian process to use directly in fitting the emulator. If
None
then the hyperparameters should be estimated as part of fitting to data. -
hyperparameter_bounds
(Optional[Sequence[OptionalFloatPairs]]
, default:None
) –A sequence of bounds to apply to hyperparameters during estimation, of the form
(lower_bound, upper_bound)
. All but the last tuple should represent bounds for the correlation length scale parameters, in the same order as the ordering of the corresponding input coordinates, while the last tuple should represent bounds for the process variance.
Source code in exauq/core/modelling.py
predict(x)
abstractmethod
Make a prediction of a simulator output for a given input.
Parameters:
-
x
(Input
) –A simulator input.
Returns:
-
GaussianProcessPrediction
–This Gaussian process's prediction of the simulator output from the given input.
Source code in exauq/core/modelling.py
update(training_data=None, hyperparameters=None, hyperparameter_bounds=None)
Update the current fitted gp to new conditions.
Allows the user a more friendly experience when implementing different hyperparameters or hyperparameter bounds or adding new training data to their GP without having to construct the refit themselves.
Parameters:
-
training_data
(Optional[Sequence[TrainingDatum]]
, default:None
) –The pairs of inputs and simulator outputs on which the Gaussian process should be trained.
-
hyperparameters
(Optional[GaussianProcessHyperparameters]
, default:None
) –Hyperparameters for a Gaussian process to use directly in fitting the emulator. If
None
then the hyperparameters should be estimated as part of fitting to data. -
hyperparameter_bounds
(Optional[Sequence[OptionalFloatPairs]]
, default:None
) –A sequence of bounds to apply to hyperparameters during estimation, of the form
(lower_bound, upper_bound)
. All but the last tuple should represent bounds for the correlation length scale parameters, in the same order as the ordering of the corresponding input coordinates, while the last tuple should represent bounds for the process variance.
Source code in exauq/core/modelling.py
AbstractHyperparameters
Bases: ABC
A base class for hyperparameters used to train an emulator.
This class doesn't implement any functionality, but instead is used to indicate to type checkers where a class containing hyperparameters for fitting a concrete emulator is required. Users should derive from this class when creating concrete classes of hyperparameters.
Source code in exauq/core/modelling.py
GaussianProcessHyperparameters
dataclass
Bases: AbstractHyperparameters
Hyperparameters for use in fitting Gaussian processes.
There are three basic (sets of) hyperparameters used for fitting Gaussian processes: correlation length scales, process variance and, optionally, a nugget. These are expected to be on a linear scale; transformation functions for converting to a log scale are provided as static methods.
Equality of GaussianProcessHyperparameters
objects is tested hyperparameter-wise up
to the default numerical precision defined in exauq.core.numerics.FLOAT_TOLERANCE
(see exauq.core.numerics.equal_within_tolerance
).
Parameters:
-
corr_length_scales
(sequence or Numpy array of Real
) –The correlation length scale parameters. The length of the sequence or array should equal the number of input coordinates for an emulator and each scale parameter should be a positive.
-
process_var
(Real
) –The process variance, which should be positive.
-
nugget
(Real
, default:None
) –(Default: None) A nugget, which should be non-negative if provided.
Attributes:
-
corr_length_scales
(sequence or Numpy array of Real
) –(Read-only) The correlation length scale parameters.
-
process_var
(Real
) –(Read-only) The process variance.
-
nugget
((Real, optional)
) –(Read only, default: None) The nugget, or
None
if not supplied.
See Also:
equal_within_tolerance: Numerical tolerance check.
Source code in exauq/core/modelling.py
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 |
|
corr_length_scales: Union[Sequence[Real], np.ndarray[Real]]
instance-attribute
(Read-only) The correlation length scale parameters.
nugget: Optional[Real] = None
class-attribute
instance-attribute
(Read only, default: None) The nugget, or None
if not supplied.
process_var: Real
instance-attribute
(Read-only) The process variance.
transform_corr(corr_length_scales)
staticmethod
Transform a correlation length scale parameter to a negative log scale.
This applies the mapping corr_length_scale -> -2 * log(corr_length_scale)
,
using the natural log.
Source code in exauq/core/modelling.py
transform_cov(process_var)
staticmethod
Transform a process variance to the (natural) log scale via ``process_var -> log(process_var).
Source code in exauq/core/modelling.py
transform_nugget(nugget)
staticmethod
Transform a nugget to the (natural) log scale via nugget -> log(nugget)
.
Source code in exauq/core/modelling.py
GaussianProcessPrediction
Bases: Prediction
Represents a prediction arising from a Gaussian process.
In addition to the functionality provided by Prediction
, instances of this class
include the method nes_error
for computing the normalised expected square (NES)
error at a simulator output, utilising the Gaussian assumption.
Attributes:
-
estimate
(Real
) –The estimated value of the prediction.
-
variance
(Real
) –The variance of the prediction.
Source code in exauq/core/modelling.py
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
|
nes_error(observed_output)
Calculate the normalised expected squared (NES) error.
This is defined as the expectation of the squared error divided by the standard
deviation of the squared error, for a given observed simulation output.
Mathematically, the denominator of this fraction is zero precisely when this
prediction's variance is zero; in this case, the NES error is defined to be zero
if the observed output is equal to this prediction's estimate and inf
otherwise. However, the implementation of this method checks for whether the
numerator (i.e. squared error) and/or the denominator (i.e. the standard deviation
of the squared error) are zero; furthermore, these are done with exact equality
checks on the floating point numbers involved, rather than a check up to some
numerical tolerance.
Parameters:
-
observed_output
(Real
) –The output of a simulator to compare this prediction with. Must be a finite number.
Returns:
-
float
–The normalised expected squared error for this prediction at the given simulator output.
Notes
For Gaussian process emulators, the NES error can be computed from the predictive variance and squared error of the emulator's prediction at the simulator input:
sq_error = (m - observed_output) ** 2
expected_sq_error = var + sq_error
std_sq_error = sqrt((2 * (var**2) + 4 * var * sq_error)
nes_error = expected_sq_error / std_sq_error
where m
is the point estimate of the Gaussian process prediction at x
and
var
is the predictive variance of this estimate [1].
References
[1] Mohammadi, H. et al. (2022) "Cross-Validation-based Adaptive Sampling for Gaussian process models". DOI: https://doi.org/10.1137/21M1404260
Source code in exauq/core/modelling.py
Input
Bases: Sequence
The input to a simulator or emulator.
Input
objects should be thought of as coordinate vectors. They implement the
Sequence abstract base class from the collections.abc module
. Applying the
len
function to an Input
object will return the number of coordinates in it.
Individual coordinates can be extracted from an Input
by using index
subscripting (with indexing starting at 0
).
Parameters:
-
*args
(tuple of Real
, default:()
) –The coordinates of the input. Each coordinate must define a finite number that is not a missing value (i.e. not None or NaN).
Attributes:
-
value
(tuple of Real, Real or None
) –Represents the point as a tuple of real numbers (dim > 1), a single real number (dim = 1) or None (dim = 0). Note that finer-grained typing is preserved during construction of an
Input
. See the Examples.
Examples:
Single arguments just return a number:
Types are preserved coordinate-wise:
>>> import numpy as np
>>> x = Input(1.3, np.float64(2), np.int16(1))
>>> print([type(a) for a in x.value])
[<class 'float'>, <class 'numpy.float64'>, <class 'numpy.int16'>]
Empty argument list gives an input with value
= None
:
The len
function provides the number of coordinates:
The individual coordinates and slices of inputs can be retrieved by indexing:
Source code in exauq/core/modelling.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|
value: Union[tuple[Real, ...], Real, None]
property
(Read-only) Gets the value of the input, as a tuple of real numbers (dim > 1), a single real number (dim = 1), or None (dim = 0).
__eq__(other)
Returns True
precisely when other
is an Input
with the same
coordinates as this Input
Source code in exauq/core/modelling.py
__getitem__(item)
Gets the coordinate at the given index of this input, or returns a new
Input
built from the given slice of coordinate entries.
Source code in exauq/core/modelling.py
__len__()
from_array(input)
classmethod
Create a simulator input from a Numpy array.
Parameters:
-
input
(ndarray
) –A 1-dimensional Numpy array defining the coordinates of the input. Each array entry should define a finite number that is not a missing value (i.e. not None or NaN).
Returns:
-
Input
–A simulator input with coordinates defined by the supplied array.
Source code in exauq/core/modelling.py
sequence_from_array(inputs)
classmethod
Create a tuple of inputs from a sequence of arrays or 2D NDarray.
Parameters:
-
inputs
(Union[Sequence[ndarray], ndarray]
) –A 2-dimensional array (or sequence of arrays) which has a sequence of input co-ordinate arrays to be converted to the Input type.
Returns:
-
tuple[Input]:
–A tuple of simulator Input co-ordinates.
Source code in exauq/core/modelling.py
MultiLevel
Bases: dict[int, T]
A multi-level collection of objects, as a mapping from level to objects.
Objects from this class are dict
instances that have integer keys. The keys
should be integers that define the levels, with the value at a key giving the object
at the corresponding level.
The only methods of dict
that this class overrides are those concerning equality
testing and the result of applying repr
. An instance of this class is equal to
another object precisely when the other object is also an instance of this class and
there is equality as dicts.
Parameters:
-
elements
(Mapping[int, T] or Sequence[T]
) –Either a mapping of integers to objects, or another sequence of objects. If a sequence is provided that isn't a mapping, then the returned multi-level collection will have levels enumerating the objects from the sequence in order, starting at level 1.
Attributes:
-
levels
(tuple[int, ...]
) –(Read-only) The levels in the collection, in increasing order.
Notes
No checks are performed to ensure all objects in the collection have the same type, however this class supports type hinting as a generic. Users requiring such checks should create a subclass where this is performed.
Examples:
Create a multi-level collection of strings:
>>> ml: MultiLevel[str]
>>> d = {2: "the", 4: "quick", 6: "brown", 8: "fox"}
>>> ml = MultiLevel(d)
>>> ml.levels
(2, 4, 6, 8)
>>> ml[2]
'the'
>>> ml[8]
'fox'
Alternatively, a sequence of elements can be provided, in which case the levels will enumerate the sequence in order:
>>> words = ["the", "quick", "brown", "fox"]
>>> ml = MultiLevel(d)
>>> ml.levels
(1, 2, 3, 4)
>>> ml[1]
'the'
>>> ml[4]
'fox'
Note that a MultiLevel collection is not equal to another mapping if the other object is not also a MultiLevel instance:
>>> d = dict(ml)
>>> ml == d
False
>>> dict.__eq__(d, ml) # equal when considered as dicts
True
>>> ml == MultiLevel(d)
True
Source code in exauq/core/modelling.py
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 |
|
levels: tuple[int, ...]
property
(Read-only) The levels in the collection, in increasing order.
__add__(other)
Add two MultiLevel objects together.
Creates a new MultiLevel object that per level contains a tuple of all of the items in both self and other. If other has any items that are on a separate level to any previously stored in self, then this will create a new level.
NOTE: It concatenates elements of sequences on the same level into 1 combined tuple, not individually adding the elements mathematically. See Examples.
Parameters:
-
other
(other: MultiLevel[T] | None
) –The MultiLevel object to add to self.
Returns:
-
A new multi-level collection, containing tuples of the new items stored at each level.
–
Examples:
>>> b = MultiLevel(
{
1: [4, 5, 6],
2: ("d", "e", "f"),
3: [TrainingDatum(Input(0.9), 1.5)],
4: ["Test"]
})
>>> c = a + b
>>> c
MultiLevel({1: (1, 2, 3, 4, 5, 6),
2: ('a', 'b', 'c', 'd', 'e', 'f'),
3: (TrainingDatum(input=Input(0.5), output=1),
TrainingDatum(input=Input(0.9), output=1.5)),
4: ('Test',)})
Source code in exauq/core/modelling.py
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 |
|
map(f)
Apply a function level-wise.
Creates a new multi-level collection by applying the given function to each (level, value) mapping in this object.
Parameters:
-
f
(Callable[[int, T], S]
) –The function to apply to (level, value) pairs.
Returns:
-
MultiLevel[S]
–A new multi-level collection, with levels equal to
self.levels
and values created by applyingf
to the (level, value) pairs ofself
.
Source code in exauq/core/modelling.py
MultiLevelGaussianProcess
Bases: MultiLevel[AbstractGaussianProcess]
, AbstractEmulator
A multi-level Gaussian process (GP) emulator for simulators.
A multi-level GP is a weighted sum of Gaussian processes, where each GP in the sum is
considered to be at a particular integer level, and each level only has one GP.
Training the multi-level GP consists of training each GP independently of the others,
by supplying training data for specific levels. A key assumption of this class is that
the constituent GPs are independent of each other, in the probabilistic sense. This
assumption is used when making predictions for the overall multi-level GP at simulator
inputs (see the predict
method for details).
Parameters:
-
gps
(Union[Mapping[int, AbstractGaussianProcess], Sequence[AbstractGaussianProcess]]
) –The Gaussian processes for each level in this multi-level GP. If provided as a mapping of integers to Gaussian processes, then the levels for this multi-level GP will be the keys of this mapping (note these don't need to be sequential or start from 1). If provided as a sequence of Gaussian processes, then these will be assigned to levels 1, 2, ... in the order provided by the sequence.
-
coefficients
(Union[Mapping[int, Real], Sequence[Real], Real]
, default:1
) –The coefficients to multiply the Gaussian processes at each level by, when considering this multi-level GP as a weighted sum of the Gaussian processes. If provided as a mapping of integers to real numbers, then the keys will be considered as levels, and there must be a coefficient supplied for each level defined by
gps
(coefficients for extra levels are ignored). If provided as a sequence of real numbers, then the length of the sequence must be equal to the number of levels defined bygps
, in which case the coefficients will be assigned to the levels in ascending order, as defined by the ordering of the coefficient sequence. If provided as a single real number then this coefficient is assigned to each level defined bygps
.
See Also
MultiLevelGaussianProcess.predict : Predict a simulator output for a given input.
Source code in exauq/core/modelling.py
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 |
|
coefficients: MultiLevel[Real]
property
(Read-only) The coefficients that multiply the Gaussian processes level-wise, when considering this multi-level GP as a weighted sum of the Gaussian processes at each level.
fit_hyperparameters: MultiLevel[Optional[AbstractHyperparameters]]
property
(Read-only) The hyperparameters of the underlying fitted Gaussian process for
each level. A value of None
for a level indicates that the Gaussian process
for the level hasn't been fitted to data.
training_data: MultiLevel[tuple[TrainingDatum, ...]]
property
(Read-only) The data on which the Gaussian processes at each level have been trained.
fit(training_data, hyperparameters=None, hyperparameter_bounds=None)
Fit this multi-level Gaussian process to levelled training data.
The Gaussian process at each level within this multi-level GP is trained on the data supplied at the corresponding level. By default, hyperparameters for each level's Gaussian process are estimated, although specific hyperparameters can be supplied for some or all of the levels to be used when training instead. Similarly, bounds on hyperparameter estimation can be supplied for some or all of the levels.
In general, if any of the training data, hyperparameters or bounds contain levels not featuring within this multi-level GP, then the data for these extra levels is simply ignored.
Parameters:
-
training_data
(MultiLevel[Collection[TrainingDatum]]
) –A level-wise collection of pairs of simulator inputs and outputs for training the Gaussian processes by level. If data is not supplied for a level featuring in
self.levels
then no training is performed at that level. -
hyperparameters
(Optional[Union[MultiLevel[GaussianProcessHyperparameters], GaussianProcessHyperparameters]]
, default:None
) –Either a level-wise collection of hyperparameters to use directly when fitting each level's Gaussian process, or a single set of hyperparameters to use on each of the levels. If
None
then the hyperparameters will be estimated at each level when fitting. If aMultiLevel
collection is supplied and a level fromself.levels
is missing from the collection, then the hyperparameters at that level will be estimated when training the corresponding Gaussian process. -
hyperparameter_bounds
(Optional[Union[MultiLevel[Sequence[OptionalFloatPairs]], Sequence[OptionalFloatPairs]]]
, default:None
) –Either a level-wise collection of bounds to apply to hyperparameters during estimation, or a single collection of bounds to use on each of the levels. If a
MultiLevel
collection is supplied and a level fromself.levels
is missing from the collection, then the hyperparameters at that level will be estimated without any bounding constraints. See the documentation for thefit
method ofAbstractGaussianProcess
for details on how bounds should be constructed for each level's Gaussian process.
See Also
AbstractGaussianProcess.fit
:
Fitting individual Gaussian processes.
Source code in exauq/core/modelling.py
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 |
|
predict(x, level_predict=None)
Predict a simulator output for a given input.
If the optional level_predict argument is passed then this will set the level at which the prediction occurs. If 'None', the highest level prediction is returned.
Parameters:
-
x
(Input
) –A simulator input.
-
level_predict
(Optional[int]
, default:None
) –The chosen level of the mlgp prediction.
Returns:
-
GaussianProcessPrediction
–The emulator's prediction of the simulator output from the given the input.
Notes
The prediction for the whole multi-level Gaussian process (GP) is calculated in
terms of the predictions of the Gaussian processes at each level, together with
their coefficients in self.coefficients
, making use of the assumption that the
GPs at each level are independent of each other. As such, the predicted mean at
the input x
is equal to the sum of the predicted means from the level-wise GPs
multiplied by the corresponding coefficients, while the predicted variance is
equal to the sum of the predicted variances of the level-wise GPs multiplied by
the squares of the coefficients.
Source code in exauq/core/modelling.py
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 |
|
update(training_data=None, hyperparameters=None, hyperparameter_bounds=None)
Update the current fitted gp to new conditions.
Allows the user a more friendly experience when implementing different hyperparameters or hyperparameter bounds or adding new training data to their GP without having to construct the refit themselves.
Parameters:
-
new_design_pts
–A tuple of (level, Input) pairs for newly calculated design points to be implemented into the correct level of the gp.
-
new_outputs
–The outputs from the simulator which the new design points generated, used to retrain the gp alongside the design points.
-
hyperparameters
(Optional[Union[MultiLevel[GaussianProcessHyperparameters], GaussianProcessHyperparameters]]
, default:None
) –Hyperparameters for a Gaussian process to use directly in fitting the emulator. If
None
then the hyperparameters should be estimated as part of fitting to data. -
hyperparameter_bounds
(Optional[Union[MultiLevel[Sequence[OptionalFloatPairs]], Sequence[OptionalFloatPairs]]]
, default:None
) –A sequence of bounds to apply to hyperparameters during estimation, of the form
(lower_bound, upper_bound)
. All but the last tuple should represent bounds for the correlation length scale parameters, in the same order as the ordering of the corresponding input coordinates, while the last tuple should represent bounds for the process variance.
Source code in exauq/core/modelling.py
Prediction
dataclass
Represents the prediction of an emulator at a simulator input.
The prediction consists of a predicted value together with the variance of the prediction, which gives a measure of the uncertainty in the prediction. The standard deviation is also provided, as the square root of the variance.
Two predictions are considered equal if their estimated values and variances agree, to
within the standard tolerance exauq.core.numerics.FLOAT_TOLERANCE
as defined by the
default parameters for exauq.core.numerics.equal_within_tolerance
.
Parameters:
-
estimate
(Real
) –The estimated value of the prediction.
-
variance
(Real
) –The variance of the prediction.
Attributes:
-
estimate
(Real
) –(Read-only) The estimated value of the prediction.
-
variance
(Real
) –(Read-only) The variance of the prediction.
-
standard_deviation
(Real
) –(Read-only) The standard deviation of the prediction, calculated as the square root of the variance.
See Also
equal_within_tolerance
:
Equality up to tolerances.
Source code in exauq/core/modelling.py
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
|
estimate: Real
instance-attribute
(Read-only) The estimated value of the prediction.
standard_deviation: Real = dataclasses.field(default=None, init=False)
class-attribute
instance-attribute
(Read-only) The standard deviation of the prediction, calculated as the square root of the variance.
variance: Real
instance-attribute
(Read-only) The variance of the prediction.
__eq__(other)
Checks equality with another object up to default tolerances.
Source code in exauq/core/modelling.py
SimulatorDomain
Bases: object
Class representing the domain of a simulator.
When considering a simulator as a mathematical function f(x)
, the domain is the
set of all inputs of the function. This class supports domains that are
n-dimensional rectangles, that is, sets of inputs whose coordinates lie between some
fixed bounds (which may differ for each coordinate). Membership of a given input
can be tested using the in
operator; see the examples.
Attributes:
-
dim
(int
) –(Read-only) The dimension of this domain, i.e. the number of coordinates inputs from this domain have.
-
bounds
(tuple[tuple[Real, Real], ...]
) –(Read-only) The bounds defining this domain, as a tuple of pairs of real numbers
((a_1, b_1), ..., (a_n, b_n))
, with each pair(a_i, b_i)
representing the lower and upper bounds for the corresponding coordinate in the domain. -
dim
(int
) –(Read-only) The dimension of this domain, i.e. the number of coordinates inputs from this domain have.
-
corners
(tuple[Input]
) –(Read-only) The corner points of the domain, where each coordinate is at its respective lower or upper bound.
Parameters:
-
bounds
(Sequence[tuple[Real, Real]]
) –A sequence of tuples of real numbers
((a_1, b_1), ..., (a_n, b_n))
, with each pair(a_i, b_i)
representing the lower and upper bounds for the corresponding coordinate in the domain.
Examples:
Create a 3-dimensional domain for a simulator with inputs (x1, x2, x3)
where
1 <= x1 <= 2
, -1 <= x2 <= 1
and 0 <= x3 <= 100
:
Test whether various inputs lie in the domain:
>>> Input(1, 0, 100) in domain
True
>>> Input(1.5, -1, -1) in domain # third coordinate outside bounds
False
Source code in exauq/core/modelling.py
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 |
|
bounds: tuple[tuple[Real, Real], ...]
property
(Read-only) The bounds defining this domain, as a tuple of pairs of
real numbers ((a_1, b_1), ..., (a_n, b_n))
, with each pair (a_i, b_i)
representing the lower and upper bounds for the corresponding coordinate in the
domain.
corners: tuple[Input]
property
(Read-only) The corner points of the domain, where each coordinate is at its respective lower or upper bound.
dim: int
property
(Read-only) The dimension of this domain, i.e. the number of coordinates inputs from this domain have.
__contains__(item)
Returns True
when item
is an Input
of the correct dimension and
whose coordinates lie within, or within tolerance, of the bounds defined by this domain.
Source code in exauq/core/modelling.py
calculate_pseudopoints(inputs)
Calculates and returns a tuple of pseudopoints for a given collection of input points.
A pseudopoint in this context is defined as a point on the boundary of the domain,
or a corner of the domain. This method computes two types of pseudopoints: Boundary
pseudopoints and Corner pseudopoints, using the closest_boundary_points
and corners
methods respectively.
Parameters:
-
inputs
(Collection[Input]
) –A collection of input points for which to calculate the pseudopoints. Each input point must have the same number of dimensions as the domain and must lie within the domain's bounds.
Returns:
-
tuple[Input, ...]
–A tuple containing all the calculated pseudopoints.
Raises:
-
ValueError
–If any of the input points have a different number of dimensions than the domain, or if any of the input points lie outside the domain's bounds.
Examples:
>>> bounds = [(0, 1), (0, 1)]
>>> domain = SimulatorDomain(bounds)
>>> inputs = [Input(0.25, 0.25), Input(0.75, 0.75)]
>>> pseudopoints = domain.calculate_pseudopoints(inputs)
>>> pseudopoints # pseudopoints include boundary and corner points
(Input(0, 0.25), Input(0.25, 0), Input(1, 0.75), Input(0.75, 1), Input(0, 0), Input(0, 1), Input(1, 0), Input(1, 1))
Source code in exauq/core/modelling.py
closest_boundary_points(inputs)
Finds the closest point on the boundary for each point in the input collection. Distance is calculated using the Euclidean distance.
Parameters:
-
inputs
(Collection[Input]
) –A collection of points for which the closest boundary points are to be found. Each point in the collection must be an instance of
Input
and have the same dimensionality as the domain.
Returns:
-
tuple[Input, ...]
–The boundary points closest to a point in the given
inputs
.
Raises:
-
ValueError
–If any point in the collection is not within the bounds of the domain.
-
ValueError
–If any point in the collection does not have the same dimensionality as the domain.
Examples:
>>> bounds = [(0, 1), (0, 1)]
>>> domain = SimulatorDomain(bounds)
>>> collection = [Input(0.5, 0.5)]
>>> domain.closest_boundary_points(collection)
(Input(0, 0.5), Input(1, 0.5), Input(0.5, 0), Input(0.5, 1))
Notes
The method does not guarantee a unique solution if multiple points on the boundary are equidistant from a point in the collection. In such cases, the point that is found first in the iteration will be returned.
Source code in exauq/core/modelling.py
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 |
|
get_boundary_mesh(n)
Calculates and returns a tuple of inputs for an equally spaced boundary mesh of the domain.
The mesh calculated could also be referred to as mesh of equally spaced pseudopoints which all lie on the boundary of the domain of dimensions \(D\). In 2D this would refer to simply as points spaced equally round the edge of an (x, y) rectangle. However, higher dimensions would also consider bounding faces, surfaces etc.
The particularly handy usage of this method is for boundary repulsion points. These can easily be calculated in order to force the simulation away from the edge of the domain. For each boundary there will be n^(d-1) points where d is the dimension of the domain.
Parameters:
-
n
(int
) –The number of evenly-spaced points for each boundary face of the domain. n >= 2 as n = 2 will simply return the bounds of the domain.
Returns:
-
tuple[Input, ...]
–A tuple containing all the calculated equally spaced pseudopoints along the domain's boundary.
Raises:
-
ValueError
–If n < 2 as n = 2 returns the corners of the domain.
Notes
Due to the poor scaling of boundary meshes for k number of dimensions and n points (in the order of \(n^{k-1}\)), it is worth considering the time required for calculation of particularly dense, or particularly high in dimension meshes. Ensure to attempt dimensionality reduction wherever possible.
Examples:
>>> bounds = [(0, 2), (0, 4)]
>>> domain = SimulatorDomain(bounds)
>>> n = 3
>>> mesh_points = domain.get_boundary_mesh(n)
>>> mesh_points # mesh_points equally spaced along the boundary of the domain
>>> Input(0, 0), Input(0, 2), Input(0, 4), Input(1, 0), Input(1, 4), Input(2, 0), Input(2, 2), Input(2, 4)
Source code in exauq/core/modelling.py
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 |
|
scale(coordinates)
Scale coordinates from the unit hypercube into coordinates for this domain.
The unit hypercube is the set of points where each coordinate lies between 0
and 1
(inclusive). This method provides a transformation that rescales such
a point to a point lying in this domain. For each coordinate, if the bounds on
the coordinate in this domain are a_i
and b_i
, then the coordinate
x_i
lying between 0
and 1
is transformed to
a_i + x_i * (b_i - a_i)
.
If the coordinates supplied do not lie in the unit hypercube, then the transformation described above will still be applied, in which case the transformed coordinates returned will not represent a point within this domain.
Parameters:
-
coordinates
(Sequence[Real]
) –Coordinates of a point lying in a unit hypercube.
Returns:
-
Input
–The coordinates for the transformed point as a simulator input.
Raises:
-
ValueError
–If the number of coordinates supplied in the input argument is not equal to the dimension of this domain.
Examples:
Each coordinate is transformed according to the bounds supplied to the domain:
>>> bounds = [(0, 1), (-0.5, 0.5), (1, 11)]
>>> domain = SimulatorDomain(bounds)
>>> coordinates = (0.5, 1, 0.7)
>>> transformed = domain.scale(coordinates)
>>> transformed
Input(0.5, 0.5, 8.0)
The resulting Input
is contained in the domain:
Source code in exauq/core/modelling.py
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 |
|
TrainingDatum
dataclass
Bases: object
A training point for an emulator.
Emulators are trained on collections (x, f(x))
where x
is an input
to a simulator and f(x)
is the output of the simulator f
at x
.
This dataclass represents such pairs of inputs and simulator outputs.
Parameters:
-
input
(Input
) –An input to a simulator.
-
output
(Real
) –The output of the simulator at the input. This must be a finite number that is not a missing value (i.e. not None or NaN).
Attributes:
-
input
(Input
) –(Read-only) An input to a simulator.
-
output
(Real
) –(Read-only) The output of the simulator at the input.
Source code in exauq/core/modelling.py
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
|
input: Input
instance-attribute
(Read-only) An input to a simulator.
output: Real
instance-attribute
(Read-only) The output of the simulator at the input.
list_from_arrays(inputs, outputs)
classmethod
Create a list of training data from Numpy arrays.
It is common when working with Numpy for statistical modelling to
represent a set of inputs
and corresponding outputs
with two arrays:
a 2-dimensional array of inputs (with a row for each input) and a
1-dimensional array of outputs, where the length of the outputs
array
is equal to the length of the first dimension of the inputs
array.
This method is a convenience for creating a list of TrainingDatum
objects from these arrays.
Parameters:
-
inputs
(ndarray
) –A 2-dimensional array of simulator inputs, with each row defining a single input. Thus, the shape of
inputs
is(n, d)
wheren
is the number of inputs andd
is the number of input coordinates. -
outputs
(ndarray
) –A 1-dimensional array of simulator outputs, whose length is equal to
n
, the number of inputs (i.e. rows) ininputs
. Thei
th entry ofoutputs
corresponds to the input at rowi
ofinputs
.
Returns:
-
TrainingDatum
–A list of training data, created by binding the inputs and corresponding outputs together.
Source code in exauq/core/modelling.py
read_from_csv(path, output_col=-1, header=False)
classmethod
Read simulator inputs and outputs from a csv file.
The data from the csv file is parsed into a sequence of TrainingDatum objects,
with one datum per (non-empty) row in the csv file. By default, the last column is
assumed to contain the simulator outputs, though an alternative can be specified
via the output_col
keyword argument. The remaining columns are assumed to define
the coordinates of simulator inputs, in the same order in which they appear in the
csv file. If the csv file contains a header row then this should be specified so
that it can be skipped when reading.
While it is expected that the data in the csv will be rectangular (i.e. each row
contains the same number of columns), csv files with varying numbers of columns in
each row will be parsed, so long as the output_col
is valid for each row. (Users
should take care in this case, as the various TrainingDatum
constructed will
have simulator inputs of varying dimension.)
Parameters:
-
path
(Path
) –The path to a csv file.
-
output_col
(int
, default:-1
) –The (0-based) index of the column that defines the simulator outputs. Negative values count backwards from the end of the list of columns (the default Python behaviour). The default value corresponds to the last column in each row.
-
header
(bool
, default:False
) –Whether the csv contains a header row that should be skipped.
Returns:
-
tuple[TrainingDatum, ...]
–The training data read from the csv file.
Raises:
-
AssertionError
–If the training data contains values that cannot be parsed as finite, non-missing floats.
-
ValueError
–If 'output_col' does not define a valid column index for all rows.
Source code in exauq/core/modelling.py
tabulate(data, rows=None)
staticmethod
Neatly output a tabulated version of the inputs and outputs for a sequence of TrainingDatum
This static method of TrainingDatum will output a table for TrainingDatum Inputs and outputs so that one can quickly scan down the table to see whether the data is correct or not. It contains the optional argument rows which if left as None will print the entire table, otherwise it will print up to the row inputted. It also rounds the inputs and outputs to 10 d.p. for viewing.
Parameters:
-
data
(Sequence[TrainingDatum]
) –This should be a sequence of TrainingDatum items to be displayed
-
rows
(Optional[int]
, default:None
) –Optional integer n, to output the first n rows of data. If None, will print the entire data sequence.
Raises:
-
UserWarning:
–Raises a UserWarning if the length of the sequence to be printed is >100 and will limit the length of rows printed to 100.
Examples:
Inputs: Output:
1.0000000000 1.0000000000 2.0000000000 2.0000000000 3.0000000000 3.0000000000 4.0000000000 4.0000000000
Source code in exauq/core/modelling.py
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|